Groups of transformations

Sasha Patotski

Cornell University

ap744@cornell.edu

November 3, 2015

• Symmetries of the triangle correspond to permutations of vertices *A*, *B*, *C*, and vice versa.

- Symmetries of the triangle correspond to permutations of vertices *A*, *B*, *C*, and vice versa.
- Two types of symmetries: with and without fixed points.

- Symmetries of the triangle correspond to permutations of vertices *A*, *B*, *C*, and vice versa.
- Two types of symmetries: with and without fixed points.
- Symmetries can be composed (i.e. applied one after another).

- Symmetries of the triangle correspond to permutations of vertices *A*, *B*, *C*, and vice versa.
- Two types of symmetries: with and without fixed points.
- Symmetries can be composed (i.e. applied one after another).
- Let s_{AB}, s_{BC}, s_{AC} be the symmetries swapping the corresponding vertices. Let c be the symmetry A → B → C → A.

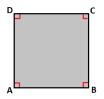
- Symmetries of the triangle correspond to permutations of vertices *A*, *B*, *C*, and vice versa.
- Two types of symmetries: with and without fixed points.
- Symmetries can be composed (i.e. applied one after another).
- Let s_{AB} , s_{BC} , s_{AC} be the symmetries swapping the corresponding vertices. Let c be the symmetry $A \rightarrow B \rightarrow C \rightarrow A$.
- What are their **orders**, i.e. the number of times you need to compose the symmetry with itself to get the identity symmetry?

- Symmetries of the triangle correspond to permutations of vertices *A*, *B*, *C*, and vice versa.
- Two types of symmetries: with and without fixed points.
- Symmetries can be composed (i.e. applied one after another).
- Let s_{AB}, s_{BC}, s_{AC} be the symmetries swapping the corresponding vertices. Let c be the symmetry A → B → C → A.
- What are their **orders**, i.e. the number of times you need to compose the symmetry with itself to get the identity symmetry?
- Express all symmetries as compositions of s_{AB}, s_{BC}.

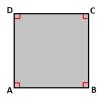
- Symmetries of the triangle correspond to permutations of vertices *A*, *B*, *C*, and vice versa.
- Two types of symmetries: with and without fixed points.
- Symmetries can be composed (i.e. applied one after another).
- Let s_{AB}, s_{BC}, s_{AC} be the symmetries swapping the corresponding vertices. Let c be the symmetry A → B → C → A.
- What are their **orders**, i.e. the number of times you need to compose the symmetry with itself to get the identity symmetry?
- Express all symmetries as compositions of s_{AB}, s_{BC}.
- Can you express any symmetry as a composition of s_{AB} and c?

- Symmetries of the triangle correspond to permutations of vertices *A*, *B*, *C*, and vice versa.
- Two types of symmetries: with and without fixed points.
- Symmetries can be composed (i.e. applied one after another).
- Let s_{AB}, s_{BC}, s_{AC} be the symmetries swapping the corresponding vertices. Let c be the symmetry A → B → C → A.
- What are their **orders**, i.e. the number of times you need to compose the symmetry with itself to get the identity symmetry?
- Express all symmetries as compositions of s_{AB}, s_{BC}.
- Can you express any symmetry as a composition of s_{AB} and c?
- Is such an expression unique?

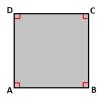
- Symmetries of the triangle correspond to permutations of vertices *A*, *B*, *C*, and vice versa.
- Two types of symmetries: with and without fixed points.
- Symmetries can be composed (i.e. applied one after another).
- Let s_{AB}, s_{BC}, s_{AC} be the symmetries swapping the corresponding vertices. Let c be the symmetry A → B → C → A.
- What are their **orders**, i.e. the number of times you need to compose the symmetry with itself to get the identity symmetry?
- Express all symmetries as compositions of s_{AB}, s_{BC}.
- Can you express any symmetry as a composition of s_{AB} and c?
- Is such an expression unique?
- Do symmetries *s*_{AB}, *s*_{BC} commute?



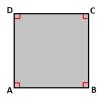
• Can any permutation of vertices be realized as a symmetry of square?



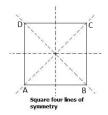
- Can any permutation of vertices be realized as a symmetry of square?
- What are the symmetries fixing a point?



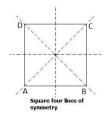
- Can any permutation of vertices be realized as a symmetry of square?
- What are the symmetries fixing a point?
- What are some symmetries of order 2 and 4?



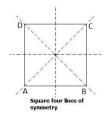
- Can any permutation of vertices be realized as a symmetry of square?
- What are the symmetries fixing a point?
- What are some symmetries of order 2 and 4?
- Which symmetries reverse orientation of vertices, and which do not?



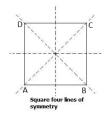
• Let c be the symmetry $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$.



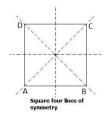
- Let c be the symmetry $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$.
- s_v be the reflection $A \leftrightarrow B$, $C \leftrightarrow D$;
- s_h be the reflection $A \leftrightarrow D$, $B \leftrightarrow C$;
- s_{d1} be the reflection $B \leftrightarrow D$;
- s_{d2} be the reflection $A \leftrightarrow C$.



- Let c be the symmetry $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$.
- s_v be the reflection $A \leftrightarrow B$, $C \leftrightarrow D$;
- s_h be the reflection $A \leftrightarrow D$, $B \leftrightarrow C$;
- s_{d1} be the reflection $B \leftrightarrow D$;
- s_{d2} be the reflection $A \leftrightarrow C$.
- What is the set of symmetries of the square?



- Let c be the symmetry $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$.
- s_v be the reflection $A \leftrightarrow B$, $C \leftrightarrow D$;
- s_h be the reflection $A \leftrightarrow D$, $B \leftrightarrow C$;
- s_{d1} be the reflection $B \leftrightarrow D$;
- s_{d2} be the reflection $A \leftrightarrow C$.
- What is the set of symmetries of the square?
- Do s_h and s_v commute?



- Let c be the symmetry $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$.
- s_v be the reflection $A \leftrightarrow B$, $C \leftrightarrow D$;
- s_h be the reflection $A \leftrightarrow D$, $B \leftrightarrow C$;
- s_{d1} be the reflection $B \leftrightarrow D$;
- s_{d2} be the reflection $A \leftrightarrow C$.
- What is the set of symmetries of the square?
- Do s_h and s_v commute?
- **Exercise:** can you express s_h , s_{d1} and s_{d2} using c and s_v ?

Suppose you have a mattress.

< 🗗 🕨

3

Suppose you have a mattress.

Suppose you have a mattress.

You want to make a flipping schedule to prevent your magic mattress from becoming a sagging mattress.

Sagging mattress

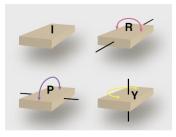
Let's agree, it looks bad (and probably feels not much better).

• There are 4 positions of the mattress you can use it in.

- There are 4 positions of the mattress you can use it in.
- You can achieve all of them by using the following flips:

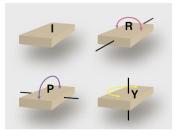


- There are 4 positions of the mattress you can use it in.
- You can achieve all of them by using the following flips:



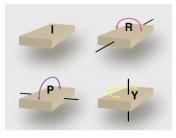
• You would like to have a single rule of flipping that you can use to achieve every possible mattress position.

- There are 4 positions of the mattress you can use it in.
- You can achieve all of them by using the following flips:



- You would like to have a single rule of flipping that you can use to achieve every possible mattress position.
- Write down the multiplication table for *I*, *R*, *P*, *Y*.

- There are 4 positions of the mattress you can use it in.
- You can achieve all of them by using the following flips:



- You would like to have a single rule of flipping that you can use to achieve every possible mattress position.
- Write down the multiplication table for *I*, *R*, *P*, *Y*.
- Can you get the desired schedule?

• Symmetries of a "thing" can be composed ("multiplied").

Image: Image:

э

- Symmetries of a "thing" can be composed ("multiplied").
- The set of symmetries is closed under composition, identity symmetry is in it, and every symmetry can be inverted.

- Symmetries of a "thing" can be composed ("multiplied").
- The set of symmetries is closed under composition, identity symmetry is in it, and every symmetry can be inverted.
- Symmetries under multiplication form a non-trivial (interesting!) structure.

- Symmetries of a "thing" can be composed ("multiplied").
- The set of symmetries is closed under composition, identity symmetry is in it, and every symmetry can be inverted.
- Symmetries under multiplication form a non-trivial (interesting!) structure.
- Not all symmetries commute.

- Symmetries of a "thing" can be composed ("multiplied").
- The set of symmetries is closed under composition, identity symmetry is in it, and every symmetry can be inverted.
- Symmetries under multiplication form a non-trivial (interesting!) structure.
- Not all symmetries commute.
- Often the set of symmetries (which can be big!) can be expressed in terms of a very few symmetries, which "generate" this set.

Definition

Let X be a set, and let G be a subset of the set Bij(X) of all bijections $X \to X$. One says G is a **group** if

- **(**) *G* is closed under composition;
- \bigcirc id \in G;
- 3 if $g \in G$, then $g^{-1} \in G$.

Example

Symmetries of a triangle, a square and a mattress form a group.

Symmetric group

Take $X = \{1, ..., n\}$, and take G = Bij(X) to be the set of all bijections from X to X. This group is usually denoted by S_n .

Symmetric group

Take $X = \{1, ..., n\}$, and take G = Bij(X) to be the set of all bijections from X to X. This group is usually denoted by S_n .

• Is G a group?

Take $X = \{1, ..., n\}$, and take G = Bij(X) to be the set of all bijections from X to X. This group is usually denoted by S_n .

- Is G a group?
- How many elements does it have?

Take $X = \{1, ..., n\}$, and take G = Bij(X) to be the set of all bijections from X to X. This group is usually denoted by S_n .

- Is G a group?
- How many elements does it have?

Definition

The number of elements in a group G is called its **order**.

۲

Take $X = \{1, ..., n\}$, and take G = Bij(X) to be the set of all bijections from X to X. This group is usually denoted by S_n .

- Is G a group?
- How many elements does it have?

Definition

The number of elements in a group G is called its **order**.

٩

 For 1 ≤ i < j ≤ n denote by (ij) the permutation swapping i and j, and doing nothing to the other elements. Such a permutation is called transposition.

Take $X = \{1, ..., n\}$, and take G = Bij(X) to be the set of all bijections from X to X. This group is usually denoted by S_n .

- Is G a group?
- How many elements does it have?

Definition

The number of elements in a group G is called its **order**.

٩

- For 1 ≤ i < j ≤ n denote by (ij) the permutation swapping i and j, and doing nothing to the other elements. Such a permutation is called transposition.
- If j = i + 1, the transposition (*ij*) is called a **transposition of neighbors**.

Take $X = \{1, ..., n\}$, and take G = Bij(X) to be the set of all bijections from X to X. This group is usually denoted by S_n .

- Is G a group?
- How many elements does it have?

Definition

The number of elements in a group G is called its **order**.

٥

- For 1 ≤ i < j ≤ n denote by (ij) the permutation swapping i and j, and doing nothing to the other elements. Such a permutation is called transposition.
- If j = i + 1, the transposition (*ij*) is called a **transposition of neighbors**.
- Prove that any permutation is a composition of transpositions of neighbors.

It is convenient to denote permutations by

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \end{pmatrix}$$

or simply by

$$\sigma = \begin{pmatrix} \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$$

- 一司

э

It is convenient to denote permutations by

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$$

or simply by

$$\sigma = \begin{pmatrix} \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$$

• Find composition $\sigma_2 \circ \sigma_1$ of two permutations

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 6 & 1 & 5 \end{pmatrix}$$

It is convenient to denote permutations by

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$$

or simply by

$$\sigma = \begin{pmatrix} \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$$

• Find composition $\sigma_2 \circ \sigma_1$ of two permutations

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 6 & 1 & 5 \end{pmatrix}$$

• Find the inverses of σ_1 , σ_2 and $\sigma_2 \circ \sigma_1$.

It is convenient to denote permutations by

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$$

or simply by

$$\sigma = \begin{pmatrix} \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$$

• Find composition $\sigma_2 \circ \sigma_1$ of two permutations

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 6 & 1 & 5 \end{pmatrix}$$

• Find the inverses of σ_1 , σ_2 and $\sigma_2 \circ \sigma_1$.

• Verify that $(\sigma_2 \circ \sigma_1)^{-1} = \sigma_1^{-1} \circ \sigma_2^{-1}$.

For $\sigma \in S_n$ define $inv(\sigma)$ to be the number of pairs (*ij*) such that i < j but $\sigma(i) > \sigma(j)$. This number $inv(\sigma)$ is called the **number of inversions** of σ .

• Define the sign of σ to be $sgn(\sigma) = (-1)^{inv(\sigma)}$.

- Define the sign of σ to be $sgn(\sigma) = (-1)^{inv(\sigma)}$.
- What is the sign of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{pmatrix}$?

- Define the sign of σ to be $sgn(\sigma) = (-1)^{inv(\sigma)}$.
- What is the sign of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{pmatrix}$?
- Prove that for any representation of σ as a composition of N transpositions of neighbors, the sign $sgn(\sigma)$ is $(-1)^N$.

- Define the sign of σ to be $sgn(\sigma) = (-1)^{inv(\sigma)}$.
- What is the sign of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{pmatrix}$?
- Prove that for any representation of σ as a composition of N transpositions of neighbors, the sign $sgn(\sigma)$ is $(-1)^N$.
- Prove that for two permutations σ, τ we have $sgn(\sigma \circ \tau) = sgn(\sigma)sgn(\tau)$.