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Symmetries of a triangle

C

@ Symmetries of the triangle correspond to permutations of vertices
A, B, C, and vice versa.
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Symmetries of a triangle

C

@ Symmetries of the triangle correspond to permutations of vertices
A, B, C, and vice versa.
@ Two types of symmetries: with and without fixed points.
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Symmetries of a triangle

C

@ Symmetries of the triangle correspond to permutations of vertices
A, B, C, and vice versa.

@ Two types of symmetries: with and without fixed points.

@ Symmetries can be composed (i.e. applied one after another).

Sasha Patotski (Cornell University) Transformations November 3, 2015 2/12



Symmetries of a triangle

C

@ Symmetries of the triangle correspond to permutations of vertices
A, B, C, and vice versa.

Two types of symmetries: with and without fixed points.
Symmetries can be composed (i.e. applied one after another).
Let sag, sac, sac be the symmetries swapping the corresponding
vertices. Let ¢ be the symmetry A— B — C — A.
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Symmetries of a triangle

C

@ Symmetries of the triangle correspond to permutations of vertices

A, B, C, and vice versa.

Two types of symmetries: with and without fixed points.

Symmetries can be composed (i.e. applied one after another).

Let sag, sac, sac be the symmetries swapping the corresponding

vertices. Let ¢ be the symmetry A— B — C — A.

@ What are their orders, i.e. the number of times you need to compose
the symmetry with itself to get the identity symmetry?
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Symmetries of a triangle

C

Symmetries of the triangle correspond to permutations of vertices

A, B, C, and vice versa.

Two types of symmetries: with and without fixed points.
Symmetries can be composed (i.e. applied one after another).

Let sag, sac, sac be the symmetries swapping the corresponding
vertices. Let ¢ be the symmetry A— B — C — A.

@ What are their orders, i.e. the number of times you need to compose
the symmetry with itself to get the identity symmetry?

Express all symmetries as compositions of sag, sgc.
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Symmetries of a triangle

C

@ Symmetries of the triangle correspond to permutations of vertices
A, B, C, and vice versa.

@ Two types of symmetries: with and without fixed points.

@ Symmetries can be composed (i.e. applied one after another).

o Let sag, sec, Sac be the symmetries swapping the corresponding
vertices. Let ¢ be the symmetry A— B — C — A.

@ What are their orders, i.e. the number of times you need to compose
the symmetry with itself to get the identity symmetry?

@ Express all symmetries as compositions of sag, sgc.

@ Can you express any symmetry as a composition of sag and c¢?
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Symmetries of a triangle

C

@ Symmetries of the triangle correspond to permutations of vertices
A, B, C, and vice versa.

@ Two types of symmetries: with and without fixed points.

@ Symmetries can be composed (i.e. applied one after another).

o Let sag, sec, Sac be the symmetries swapping the corresponding
vertices. Let ¢ be the symmetry A— B — C — A.

@ What are their orders, i.e. the number of times you need to compose
the symmetry with itself to get the identity symmetry?

@ Express all symmetries as compositions of sag, sgc.

@ Can you express any symmetry as a composition of sag and c¢?

@ |s such an expression unique?
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Symmetries of a triangle

C

Symmetries of the triangle correspond to permutations of vertices
A, B, C, and vice versa.

Two types of symmetries: with and without fixed points.
Symmetries can be composed (i.e. applied one after another).

Let sag, sac, sac be the symmetries swapping the corresponding
vertices. Let ¢ be the symmetry A— B — C — A.

What are their orders, i.e. the number of times you need to compose
the symmetry with itself to get the identity symmetry?

Express all symmetries as compositions of sag, sgc.

Can you express any symmetry as a composition of sag and c?

Is such an expression unique?

Do symmetries sag, sgc commute?
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Symmetries of a square

@ Can any permutation of vertices be realized as a symmetry of square?
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Symmetries of a square

@ Can any permutation of vertices be realized as a symmetry of square?

@ What are the symmetries fixing a point?
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Symmetries of a square

@ Can any permutation of vertices be realized as a symmetry of square?
@ What are the symmetries fixing a point?

@ What are some symmetries of order 2 and 47
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Symmetries of a square

@ Can any permutation of vertices be realized as a symmetry of square?
@ What are the symmetries fixing a point?
@ What are some symmetries of order 2 and 47

@ Which symmetries reverse orientation of vertices, and which do not?
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Symmetries of sgare, contd.

=

A ! B .
Square four fines of
symmetry

@ Let ¢ be the symmetry A—- B — C — D — A
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Symmetries of sqare, contd.

Square four fines of
symmetry

Let ¢ be the symmetry A— B — C— D — A.
s, be the reflection A+ B, C + D;

sp be the reflection A < D, B + C;

sq41 be the reflection B < D;

S4o be the reflection A <+ C.
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Symmetries of sqare, contd.

Square four fines of
symmetry

Let ¢ be the symmetry A— B — C— D — A.
s, be the reflection A <+ B, C < D;

sp be the reflection A < D, B + C;

sq41 be the reflection B < D;

S4o be the reflection A <+ C.

What is the set of symmetries of the square?
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Symmetries of sqare, contd.

Square four fines of
symmetry

Let ¢ be the symmetry A— B — C— D — A.
s, be the reflection A+ B, C + D;

sp be the reflection A < D, B + C;

sq41 be the reflection B < D;

S4o be the reflection A <+ C.

What is the set of symmetries of the square?
Do s, and s, commute?
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Symmetries of sqare, contd.

=

b
.

A ! B .
Square four fines of
symmetry

Let ¢ be the symmetry A— B — C— D — A.

s, be the reflection A+ B, C + D;

sp be the reflection A < D, B + C;

sq41 be the reflection B < D;

S4o be the reflection A <+ C.

What is the set of symmetries of the square?

Do s, and s, commute?

o Exercise: can you express sy, Sq1 and sg» using ¢ and s,?
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Flipping mattress

Suppose you have a mattress.

Sasha Patotski (Cornell University) Transformations November 3, 2015



Flipping mattress

Suppose you have a mattress.
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Flipping mattress

Suppose you have a mattress.

You want to make a flipping schedule to prevent your magic mattress
from becoming a sagging mattress.
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Sagging mattress

Let's agree, it looks bad (and probably feels not much better).
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Mattress moves

@ There are 4 positions of the mattress you can use it in.
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Mattress moves

@ There are 4 positions of the mattress you can use it in.

@ You can achieve all of them by using the following flips:
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Mattress moves

@ There are 4 positions of the mattress you can use it in.

@ You can achieve all of them by using the following flips:

I (RN

> <
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@ You would like to have a single rule of flipping that you can use to
achieve every possible mattress position.
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Mattress moves

@ There are 4 positions of the mattress you can use it in.

@ You can achieve all of them by using the following flips:

| g
_ P 5
- I

@ You would like to have a single rule of flipping that you can use to
achieve every possible mattress position.

@ Write down the multiplication table for I, R, P, Y.
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Mattress moves

@ There are 4 positions of the mattress you can use it in.

@ You can achieve all of them by using the following flips:

| g
_ P 5
- I

@ You would like to have a single rule of flipping that you can use to
achieve every possible mattress position.

@ Write down the multiplication table for I, R, P, Y.
@ Can you get the desired schedule?
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Summary

@ Symmetries of a “thing” can be composed (“multiplied”).
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@ Symmetries of a “thing” can be composed (“multiplied”).

@ The set of symmetries is closed under composition, identity symmetry
is in it, and every symmetry can be inverted.
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@ Symmetries of a “thing” can be composed (“multiplied”).

@ The set of symmetries is closed under composition, identity symmetry
is in it, and every symmetry can be inverted.

@ Symmetries under multiplication form a non-trivial (interesting!)
structure.
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@ Symmetries of a “thing” can be composed (“multiplied”).

@ The set of symmetries is closed under composition, identity symmetry
is in it, and every symmetry can be inverted.

@ Symmetries under multiplication form a non-trivial (interesting!)
structure.

@ Not all symmetries commute.
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Symmetries of a “thing” can be composed (“multiplied”).

The set of symmetries is closed under composition, identity symmetry
is in it, and every symmetry can be inverted.

@ Symmetries under multiplication form a non-trivial (interesting!)
structure.

Not all symmetries commute.

Often the set of symmetries (which can be big!) can be expressed in
terms of a very few symmetries, which “generate” this set.

Sasha Patotski (Cornell University) Transformations November 3, 2015 8/12



Definition of group of transformation

Definition

Let X be a set, and let G be a subset of the set Bij(X) of all bijections
X — X. One says G is a group if

@ G is closed under composition;
Q idec G;
Q ifge G, thenglegG.

v

Symmetries of a triangle, a square and a mattress form a group. \

Sasha Patotski (Cornell University)

Transformations

November 3, 2015 9/12



Symmetric group

Take X = {1,...,n}, and take G = Bij(X) to be the set of all bijections
from X to X. This group is usually denoted by S,.
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Symmetric group

Take X = {1,...,n}, and take G = Bij(X) to be the set of all bijections
from X to X. This group is usually denoted by S,.

o Is G a group?
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Symmetric group

Take X = {1,...,n}, and take G = Bij(X) to be the set of all bijections
from X to X. This group is usually denoted by S,.

o Is G a group?
@ How many elements does it have?
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Symmetric group

Take X = {1,...,n}, and take G = Bij(X) to be the set of all bijections
from X to X. This group is usually denoted by S,.

o Is G a group?
@ How many elements does it have?

Definition
The number of elements in a group G is called its order.
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Symmetric group

Take X = {1,...,n}, and take G = Bij(X) to be the set of all bijections
from X to X. This group is usually denoted by S,.

o Is G a group?
@ How many elements does it have?

Definition

The number of elements in a group G is called its order.

@ For 1 < i< j < ndenote by (ij) the permutation swapping i and J,
and doing nothing to the other elements. Such a permutation is
called transposition.
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Symmetric group

Take X = {1,...,n}, and take G = Bij(X) to be the set of all bijections
from X to X. This group is usually denoted by S,.

o Is G a group?

@ How many elements does it have?

Definition
The number of elements in a group G is called its order.

@ For 1 < i< j < ndenote by (ij) the permutation swapping i and J,
and doing nothing to the other elements. Such a permutation is
called transposition.

e If j =i+ 1, the transposition (ij) is called a transposition of
neighbors.
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Symmetric group

Take X = {1,...,n}, and take G = Bij(X) to be the set of all bijections
from X to X. This group is usually denoted by S,.

o Is G a group?
@ How many elements does it have?
Definition
The number of elements in a group G is called its order.

@ For 1 < i< j < ndenote by (ij) the permutation swapping i and J,
and doing nothing to the other elements. Such a permutation is
called transposition.

e If j =i+ 1, the transposition (ij) is called a transposition of
neighbors.

@ Prove that any permutation is a composition of transpositions of
neighbors.
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It is convenient to denote permutations by

o ( 1 2 3 .. n >
\o(1) o(2) o(3) ... o(n)
or simply by

o=(o(1) o(2) o(3) ... a(n))
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It is convenient to denote permutations by

o ( 1 2 3 .. n >
\o(1) o(2) o(3) ... o(n)
or simply by

o=(o(1) o(2) o(3) ... a(n))

@ Find composition o, o o1 of two permutations
(1 2 3 45 6 (1 2 3 4
=43 16052)°%27(23 46

5 6
15
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It is convenient to denote permutations by

o ( 1 2 3 .. n >
\o(1) o(2) o(3) ... o(n)
or simply by

o=(o(1) o(2) o(3) ... a(n))

@ Find composition o, o o1 of two permutations
(1 2 3 45 6 (1 2
=43 1605 2)°%%27\23

@ Find the inverses of o1, 02 and 0y 0 7.

3 4
4 6

5 6
15
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It is convenient to denote permutations by

o ( 1 2 3 .. n >
\o(1) o(2) o(3) ... o(n)
or simply by

o=(o(1) o(2) o(3) ... a(n))

@ Find composition o, o o1 of two permutations
(1 2 3 45 6 (1 2
=43 1605 2)°%%27\23

@ Find the inverses of o1, 02 and 0y 0 7.

o Verify that (c2001) ' =07 o0yt

3 4
4 6

5 6
15
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Sign of a permutation

Definition

For o € S, define inv(c) to be the number of pairs (ij) such that /i < j but
o(i) > o(j). This number inv(c) is called the number of inversions of o.
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Sign of a permutation

Definition

For o € S, define inv(c) to be the number of pairs (ij) such that /i < j but
o(i) > o(j). This number inv(c) is called the number of inversions of o.

inv(o)

@ Define the sign of o to be sgn(c) = (—1)
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Sign of a permutation

Definition

For o € S, define inv(c) to be the number of pairs (ij) such that /i < j but
o(i) > o(j). This number inv(c) is called the number of inversions of o.

. : 1 2
@ What is the sign of 0 = <4 3
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Sign of a permutation

Definition

For o € S, define inv(c) to be the number of pairs (ij) such that /i < j but
o(i) > o(j). This number inv(c) is called the number of inversions of o.

inv(o)

@ Define the sign of o to be sgn(c) = (—1)
1 2345 6),
4 3165 2)°

@ Prove that for any representation of ¢ as a composition of N
transpositions of neighbors, the sign sgn(c) is (—1)V.

@ What is the sign of 0 = <
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Sign of a permutation

Definition

For o € S, define inv(c) to be the number of pairs (ij) such that /i < j but
o(i) > o(j). This number inv(c) is called the number of inversions of o.

inv(o)

@ Define the sign of o to be sgn(c) = (—1)
1 23 45 6>?
4 3165 2)°
@ Prove that for any representation of ¢ as a composition of N
transpositions of neighbors, the sign sgn(c) is (—1)V.

@ What is the sign of 0 = <

@ Prove that for two permutations o, 7 we have
sgn(o o 1) = sgn(c)sgn(T).
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